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tool that re- quires extensive data for convergence, we pre-train our
model, named the Diffusion Texture Priors Model (DTPM), on a large- In the stage I, under the guiding constraints of semantic code, the diffusion model learns texture layers through residual learning from a large amount of high-quality data, which —— e 4
scale dataset of high-quality images. allows us to encapsulate diverse and rich texture knowledge into the diffusion model. In the stage Il, we fix most of the parameters of the trained diffusion model and insert Siarney

Conditional Guidance Adapters between each layer for efficient fine-tuning and conditional guidance on image restoration tasks.
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