

UniAP: Towards Universal Animal Perception in Vision via Few-shot Learning

Meiqi Sun^{1*}, Zhonghan Zhao^{2*}, Wenhao Chai^{3*}, Hanjun Luo¹, Shidong Cao¹, Yanting Zhang⁴, Jenq-Neng Hwang³, Gaoang Wang^{1,2,5†} 1 Zhejiang University-University of Illinois Urbana Champaign Institute, Zhejiang University

2 College of Computer Science and Technology, Zhejiang University 3 Electrical and Computer Engineering Department, University of Washington 4 Department of Computer Science and Technology, Donghua University 5 Shanghai Artificial Intelligence Laboratory

Motivation

Animal visual perception is important for automatically monitoring animal health, understanding animal behaviors, and assisting animal-related research. However, it is challenging to design a perception model that can adapt to different animals across various perception tasks, due to the varying poses of a large diversity of animals, lacking data on rare species, and the semantic inconsistency of different tasks. We introduce UniAP, a novel Universal Animal Perception model that leverages few-shot learning to enable cross-species perception among various visual tasks.

Method

Algorithm 1: Universal Animal Perception (UniAP)

Input: Query Image X_q , Prompt Set \mathcal{P}

Output: Predictions \hat{Y}^q

- 1: Constants:
- 2: $\mathcal{T} = \{ \text{Pose Estimation, Semantic Segmentation} \}$
- 3: Functions:
 - $f_{\mathcal{T}}$: Image encoder with task-specific parameter
- g: Label encoder (shared across tasks)
- M: Matching module
- h: Label decoder
- σ : Similarity function
- 9: **Initialize:**
- 10: $\mathbf{q} \leftarrow f_{\mathcal{T}}(X_q)$
- 11: for each (X_i^p, Y_i^p) in \mathcal{P} do
 - $\mathbf{k}_i \leftarrow f_{\mathcal{T}}(X_i^p)$ {Encode using Image Encoder}
- $\mathbf{v}_i \leftarrow g(Y_i^p)$ {Encode using Label Encoder}
- 14: **end for**
- 15: $\mathbf{m} \leftarrow \mathcal{M}(\mathbf{q}, \mathbf{k}_i, \mathbf{v}_i)$
- 16: $\hat{Y}^q \leftarrow h(\mathbf{m})$ {Decode using Label Decoder}
- 17: return Y^q

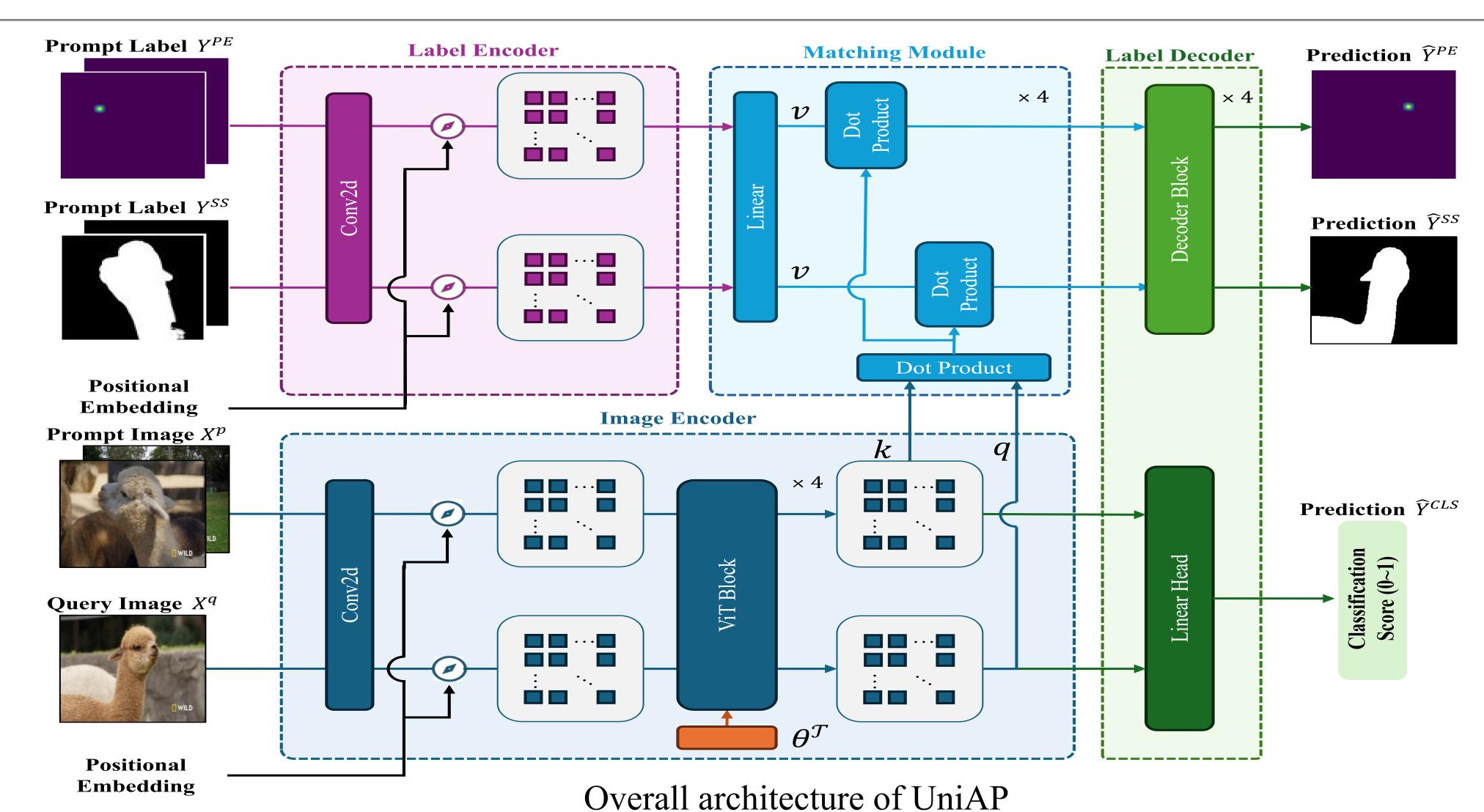
$\{ers \ heta_{\mathcal{T}}\}$	Pose Estimation		(Support Label)	- WILD	Output	
	Segmentation	[WILD	I WILD	UniAP	Mask	
}	Classification	UDH CONTROL OF THE PARTY OF THE	llama		Similarity 0.82	

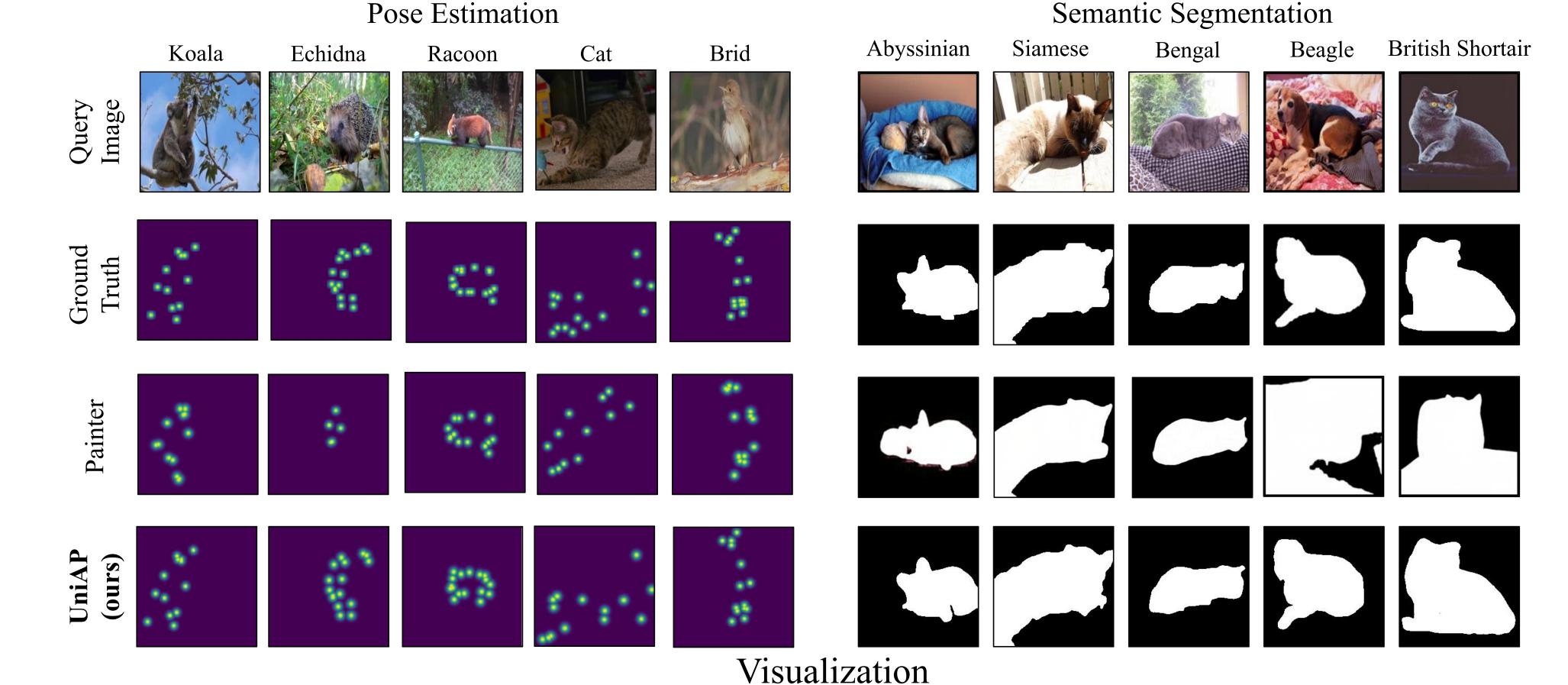
UniAP unifies different tasks under a single model via few-shot learning.

<u>`.</u>_._._._.

Algo	rithm	2:	Matching module \mathcal{M} in UniAP
_			

Input: q, k, v Output: m


- 1: Constants:
- Number of heads H, Head size d_H
- Trainable projection matrices w_h^Q, w_h^K, w_h^V, w^O
- 4: **for** h = 1 to H **do**
- $M_A \leftarrow \frac{\mathbf{q} w_h^Q(\mathbf{k} w_h^K)}{2}$
- $\mathbf{o}_h \leftarrow \operatorname{Softmax}(M_A)\mathbf{v}w_h^V$
- **7: end for**
- 8: $\mathbf{m} \leftarrow \text{Concat}(\mathbf{o}_1, ..., \mathbf{o}_H) w^O$
- 9: **return** m


Task-Specific Shared Model # tasks # shots **POMNet** multiple 58.25M multiple 353.55M Painter 111.01M 0.07Mmultiple

Number of task-specific and shared parameters for a task.

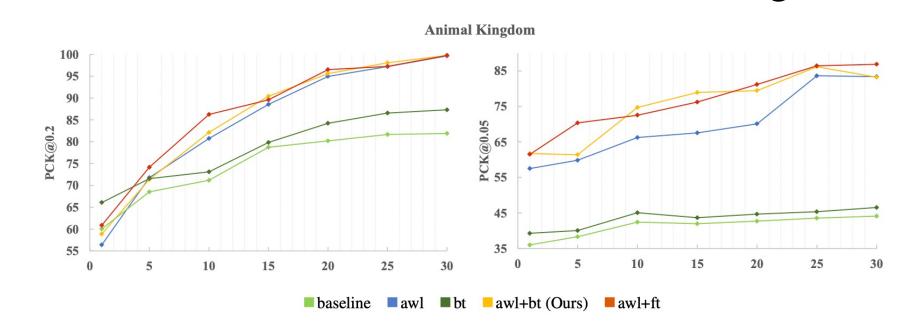
Dataset	bias tuning (awl+ft)	full tuning (awl+fft)
Animal Kingdom	3,119	4,369
Animal Pose	2,109	2,565
APT-36K	2,731	4,005

Number of tuning batches for bias tuning and full tunning.

Experiment

Model

Model	# shots	Animal Kingdom		Animal Pose		APT-36K	
		PCK@0.2	PCK@0.05	PCK@0.2	PCK@0.05	PCK@0.2	PCK@0.05
HRNet _{w48}	-	90.49	62.04	90.47	75.91	91.65	66.26
Painter	1	70.52	48.34	77.86	53.85	74.11	51.39
DOMAI :	1	59.97	30.65	73.28	51.81	63.90	38.52
POMNet	3/3/2	79.15	52.88	77.7	49.96	5.79	38.4
UniAP (ours)	1	64.44	34.73	76.67	47.31	85.31	61.72
	30 / 35 / 40	99.65	98.59	90.10	<i>77.78</i>	96.47	86.18


Results of Pose Estimation						
:	# shots	Acc.	mIoU	Model	# shots	Acc.

		ı		0.0.1000 00		
SAM _{user}	-	92.06	88.99	CLIP _{ViT-Base}	-	88.
Painter	1	86.47	77.72	CLIP _{ViT-Large}	-	90.3
Uni A D (ours)	1	97.08	93.38	UniAP (ours)	1	92.
UniAP (ours)	10	97.11	94.27	Cilizi (duis)	5	93.

Results of Semantic Segmentation and classification

	Setting	# shots	Animal Kingdom		Animal Pose		APT-36K	
0.05	- °		PCK@0.2	PCK@0.05	PCK@0.2	PCK@0.05	PCK@0.2	PCK@0.05
5	OOD	1 30 / 35 / 40	64.44 99.65	34.73 98.59	76.67 90.10	47.31 77.78	85.31 96.47	61.72 86.18
2	ID	1 20 / 20 / 35	77.39 99.26	61.25 98.10	77.69 94.97	46.74 88.47	92.41 96.92	61.41 92.70
_	CE	1 5/5/5	54.18 65.50	24.61 28.86	60.47 77.33	28.47 50.62	78.39 88.72	47.92 71.67
4				<u> </u>		<u> </u>		

Ablation studies on evaluation settings.

Ablation studies on the performance of various shots