UNIVERSITY of WASHINGTON

Most 2D-3D human pose estimation models are learning-based and are susceptible to domain gaps, leading to low generality across new datasets. However, optimization methods suffer from low performance but can function case by case. Our method takes advantage of both by proposing an optimization algorithm that applies a 3D prior diffusion model to predict accurate 3D poses based on 2D keypoints. Additionally, our method shows great zero-shot and crossevaluation capacities across 3DPW, H36m and 3DHP.

Algorithm 1 ZeDO pipeline

Require: Initial 3D pose P_{init} , Target 2D pose p_{2d} , 2D pose confidence scores C_{2d} , Camera intrinsic K, Diffusion timestamp t, Pre-trained diffusion model $\theta_q(P, t)$ $R_0, T_0 \leftarrow \arg\min_{R_0, T_0} \|K(R_0 P_{init} + T_0) - p_{2d}\|_2$ // Initial Pose Optimization $P_0 \leftarrow R_0 P_{init}$ // Iterative Optimization and Denoising $r \leftarrow K^{-1}p_{2d}$ $\hat{r} \leftarrow \frac{r}{\|r\|_2}$ for $i \leftarrow 0$ to n - 1 do if i < warmup then $T_i \leftarrow T_0$ else $T_i \leftarrow \arg\min_{T_i} \|C_{2d}(K(P_i + T_i) - p_{2d})\|_2$ end if *II Project 3D keypoints to rays* $\widetilde{P}_i \leftarrow \left((P_i + T_i) \cdot \hat{r} \right) \hat{r} - T_i$ $P_{i+1} \leftarrow \theta_g(\widetilde{P}_i, t(i))$ end for return P_n

We apply diffusion model as your 3D Human Pose prior generator.

Back to Optimization: Diffusion-based Zero-Shot 3D Human Pose Estimation

Zhongyu Jiang¹, Zhuoran Zhou¹, Lei Li², Wenhao Chai¹, Cheng-Yen Yang¹, Jenq-Neng Hwang¹ ¹University of Washington, ²University of Copenhagen

Algorithm Outline :

- Set KNN-cluster as the initial pose. Run
- optimization for appropriate R and T.
- Compute camera rays with camera parameters 2. and 2D pose.
- Move 3D pose to the rays to minimize projection 3. error. Update the new T unless it is during warmup.
- Adjust 3D pose by the prior diffusion model.
- Repeat steps 2-5 1000 times.

Our method's pipeline consists of four components illustrated in the algorithm outline. The optimization block and truncated diffusion model repeat 1000 iterations to achieve an accurate 3D prediction, P_{1000} .

Experiment

Methods	CE	Opt	PA-MPJPE \downarrow	$ MPJPE\downarrow $
Kolotouros et al. [24]			59.2	96.9
Kocabas <i>et al</i> . [22]			51.9	82.9
Kocabas et al. [23]			46.4	74.7
Li <i>et al</i> . [25]			<u>45.0</u>	<u>74.1</u>
Ma <i>et al</i> . [32]			41.3	67.5
Li et al. [25]	✓		50.9	82.0
Kocabas et al. [22]	\checkmark		56.5	93.5
Kocabas <i>et al</i> . [23]	\checkmark		50.9	82.0
Gong <i>et al</i> . [11]	\checkmark		58.5	94.1
Gholami <i>et al</i> . [9]	\checkmark		46.5	<u>81.2</u>
Chai <i>et al</i> . [5]	\checkmark		55.3	87.7
Song <i>et al</i> . [47]	\checkmark		55.9	-
Choutas <i>et al</i> . [6]	\checkmark		52.2	-
ZeDO $(S = 1, J = 17)$	\checkmark	\checkmark	40.3	69.7
ZeDO $(S = 1, J = 14)$	\checkmark	\checkmark	<u>43.1</u>	76.6

Dataset	Diff Model	RO WU			S = 1		S = 50		
			WU	RA	GT	$\mathbf{MPJPE}\downarrow$	$\textbf{PA-MPJPE} \downarrow$	$\mathbf{MPJPE}\downarrow$	$\textbf{PA-MPJPE} \downarrow$
H36M	H36M					75.0	52.7	53.4	42.7
H36M	H36M	\checkmark				77.2	53.7	52.7	42.4
H36M	H36M	\checkmark	\checkmark			65.7 (9.3 ↓)	49.0 (3.7 ↓)	51.4 (2.0 ↓)	42.1 (0.6 ↓)
H36M	H36M	\checkmark	\checkmark	\checkmark		69.5	51.4	52.9	42.5
H36M	H36M	✓	\checkmark		\checkmark	50.1	35.8	37.0	27.5
3DHP	H36M				✓	148.3	88.8	93.4	59.0
3DHP	H36M	\checkmark	\checkmark		\checkmark	113.8	74.1	80.1	56.0
3DHP	H36M	✓	\checkmark	\checkmark	\checkmark	99.9 (48.4 ↓)	67.9 (20.9 ↓)	69.9 (23.5 ↓)	49.0 (10.0 ↓)
3DHP	3DHP	✓	\checkmark		\checkmark	86.5	55.9	55.2	38.6

Minimize Reprojection Error

Ablation Study on H36M and 3DHP

Results on 3DPW